Skip to main content
Log in

Benefit and Risks of Local Anesthetics in Infants and Children

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Regional anesthesia has become a routine part of the practice of anesthesiology in infants and children. Local anesthetic toxicity is extremely rare in infants and children; however, seizures, dysrhythmias, cardiovascular collapse, and transient neuropathic symptoms have been reported.

Infants and children may be at increased risk from local anesthetics compared with adults. Larger volumes of local anesthetics are used for epidural anesthesia in infants and children than in adults. Metabolism and elimination of local anesthetics can be delayed in neonates, who also have decreased plasma concentrations of α1-acid glycoprotein, leading to increased concentrations of unbound bupivacaine. Most regional anesthetic procedures in infants and children are performed with the patient heavily sedated or anesthetized; because of this, and because a test dose is not a particularly sensitive marker of intravenous injection in the anesthetized patient, detection of intravascular local anesthetic injection is extremely difficult.

The same local anesthetics used in adult anesthetic practice are also used in infants and children. Because of its extremely short duration of action, chloroprocaine has been used primarily for continuous epidural techniques in infants and children. The use of tetracaine has generally been limited to spinal and topical anesthesia. Lidocaine (lignocaine) has been used extensively in infants and children for topical, regional, plexus, epidural and spinal anesthesia. The association between prilocaine and methemoglobinemia has generally restricted prilocaine use in infants and children to the eutectic mixture of local anesthetics (EMLA). Because of its greater degree of motor block compared with other long-acting local anesthetics, etidocaine has generally been limited to plexus blocks in infants and children. Mepivacaine has been used for both plexus and epidural anesthesia in infants and children. Because postoperative analgesia is often the primary justification for regional anesthesia in infants and children, bupivacaine, a long-acting local anesthetic, is the most commonly reported local anesthetic for pediatric regional anesthesia. Given the lower toxic threshold of bupivacaine compared with other local anesthetics, the risk-benefit ratio of bupivacaine may be greater than that of other local anesthetics.

Two new enantiomerically pure local anesthetics, ropivacaine and levobupivacaine, offer clinical profiles comparable to that of bupivacaine but without its lower toxic threshold. The extreme rarity of major toxicity from local anesthetics suggests that widespread replacement of bupivacaine with ropivacaine or levobupivacaine is probably not necessary. However, there are clinical situations, including prolonged local anesthetic infusions, use in neonates, impaired hepatic metabolic function, and anesthetic techniques requiring a large mass of local anesthetic, where replacement of bupivacaine with ropivacaine, levobupivacaine or (for continuous techniques) chloroprocaine appears prudent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Dalens B. Regional anesthesia in children. Anesth Analg 1989; 68: 654–72

    PubMed  CAS  Google Scholar 

  2. Yaster M, Maxwell LG. Pediatric regional anesthesia. Anesthesiology 1989; 70: 324–38

    PubMed  CAS  Google Scholar 

  3. Arthur DS, McNicol LR. Local anaesthetic techniques in paediatric surgery. Br J Anaesth 1986; 58: 760–78

    PubMed  CAS  Google Scholar 

  4. Dalens B, Hasnaoui A. Caudal anesthesia in pediatric surgery: success rate and adverse events in 750 consecutive patients. Anesth Analg 1989; 68: 83–9

    PubMed  CAS  Google Scholar 

  5. Dalens B, Chrysostome Y. Intervertebral epidural anaesthesia in paediatric surgery: success rate and adverse effects in 650 consecutive procedures. Paediatr Anaesth 1991; 1: 107–17

    Google Scholar 

  6. Veyckemans F, Van Obbergh LJ, Gouverneur JM. Lessons from 1100 pediatric caudal blocks in a teaching hospital. Reg Anesth 1992; 17: 119–25

    PubMed  CAS  Google Scholar 

  7. Flandin-Bléty C, Barrier G. Accidents following extradural analgesia in children: the results of a retrospective study. Paediatr Anaesth 1995; 5: 41–6

    PubMed  Google Scholar 

  8. Giaufré E, Dalens B, Gombert A. Epidemiology and morbidity of regional anesthesia in children: a one-year prospective survey of the French-language society of pediatric anesthesiologists. Anesth Analg 1996; 83: 904–12

    PubMed  Google Scholar 

  9. Busoni P. Anatomy. In: Saint-Maurice C, Schulte-Steinberg O, Armitage EN, editors. Regional anaesthesia in children. Norwalk (CT): Appleton & Lange/Mediglobe, 1990: 16–25

    Google Scholar 

  10. Dalens BJ. Caudal anesthesia. In: Dalens BJ, editor. Pediatric regional anesthesia. Boca Raton (FL); CRC Press, 1990: 353–74

    Google Scholar 

  11. Pullerits J, Holzman RS. Pediatric neuraxial blockade. J Clin Anesth 1993; 5: 342–54

    PubMed  CAS  Google Scholar 

  12. Giaufré E, Murat I. Physiological considerations. In: Saint-Maurice C, Schulte-Steinberg O, Armitage EN, editors. Regional anaesthesia in children. Norwalk (CT): Appleton & Lange/Mediglobe, 1990: 26–38

    Google Scholar 

  13. Dalens BJ, Vanneuville GN. Embryology of the spinal cord, peripheral nerves, and vertebrae. In: Dalens BJ, editor. Pediatric regional anesthesia. Boca Raton (FL): CRC Press, 1990: 13–20

    Google Scholar 

  14. Benzon HT, Strichartz GR, Gissen AJ, et al. Developmental neurophysiology of mammalian peripheral nerves and age-related differential sensitivity to local anaesthetic. Br J Anaesth 1988; 61: 754–60

    PubMed  CAS  Google Scholar 

  15. Berde C. Regional anesthesia in children: what have we learned. Anesth Analg 1996; 83: 897–900

    PubMed  CAS  Google Scholar 

  16. Hu D, Hu R, Berde CB. Neurologic evaluation of infant and adult rats before and after sciatic nerve blockade. Anesthesiology 1997; 86: 957–65

    PubMed  CAS  Google Scholar 

  17. Rowney DA, Doyle E. Epidural and subarachnoid blockade in children. Anaesthesia 1998; 53: 980–1001

    PubMed  CAS  Google Scholar 

  18. Zsigmond EK, Downs JR. Plasma cholinesterase activity in newborns and infants. Can Anaesth Soc J 1971; 18: 278–85

    PubMed  CAS  Google Scholar 

  19. Finster M. Toxicity of local anesthetics in the fetus and newborn. Bull NY Acad Med 1976; 52: 222–5

    CAS  Google Scholar 

  20. Berde CB. Convulsions associated with pediatric regional anesthesia [editorial]. Anesth Analg 1992; 75: 164–6

    PubMed  CAS  Google Scholar 

  21. Mazoit JX, Denson DD, Samii K. Pharmacokinetics of bupivacaine following caudal anesthesia in infants. Anesthesiology 1988; 68: 387–91

    PubMed  CAS  Google Scholar 

  22. Lerman J, Strong HA, LeDez KM, et al. Effects of age on the serum concentration of α1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther 1989; 46: 219–25

    PubMed  CAS  Google Scholar 

  23. Luz G, Innerhofer P, Bachmann B, et al. Bupivacaine plasma concentrations during continuous epidural anesthesia in infants and children. Anesth Analg 1996; 82: 231–4

    PubMed  CAS  Google Scholar 

  24. Beauvoir C, Rochette A, Desch G, et al. Spinal anaesthesia in newborns: total and free bupivacaine plasma concentrations. Paediatr Anaesth 1996; 6: 195–9

    PubMed  CAS  Google Scholar 

  25. Luz G, Wieser CH, Innerhofer P, et al. Free and total bupivacaine plasma concentrations after continuous epidural anaesthesia in infants and children. Paediatr Anaesth 1998; 8: 473–8

    PubMed  CAS  Google Scholar 

  26. Booker PD, Taylor C, Saba G. Perioperative changes in α1-acid glycoprotein concentrations in infants undergoing major surgery. Br J Anaesth 1996; 76: 365–8

    PubMed  CAS  Google Scholar 

  27. Desparmet J, Mateo J, Ecoffey C, et al. Efficacy of an epidural test dose in children anesthetized with halothane. Anesthesiology 1990; 72: 249–51

    PubMed  CAS  Google Scholar 

  28. Desparmet JF, Berde CB, Schwartz DC, et al. Efficacy of adrenaline, lignocaineadrenaline and isoprenaline as a test dose in halothane-anesthetized lambs. Eur J Anaesthesiol 1991; 8: 123–8

    PubMed  CAS  Google Scholar 

  29. Perillo M, Sethna N, Berde C. Intravenous isoproterenol as a marker for epidural test-dosing in children. Anesth Analg 1993; 76: 178–81

    PubMed  CAS  Google Scholar 

  30. Tanaka M, Nishikawa T. Simulation of an epidural test dose with intravenous epinephrine in sevoflurane-anesthetized children. Anesth Analg 1998; 86: 952–7

    PubMed  CAS  Google Scholar 

  31. Sethna NF, Sullivan L, Retik A, et al. Efficacy of simulated epinephrine-containing epidural test dose after intravenous atropine during isoflurane anesthesia in children. Reg Anesth Pain Med 2000; 25: 566–72

    PubMed  CAS  Google Scholar 

  32. Tanaka M, Nishikawa T. Evaluating T-wave amplitude as a guide for detecting intravascular injection of a test dose in anesthetized children. Anesth Analg 1999; 88: 754–8

    PubMed  CAS  Google Scholar 

  33. Tanaka M, Kimura T, Goyagi T, et al. Evaluating hemodynamic and T wave criteria of simulated intravascular test doses using bupivacaine or isoproterenol in anesthetized children. Anesth Analg 2000; 91: 567–72

    PubMed  CAS  Google Scholar 

  34. Kozek-Langenecker S, Chiari A, Semsroth M. Simulation of an epidural test dose with intravenous isoproterenol in awake and in halothane-anesthetized children. Anesthesiology 1996; 85: 277–80

    PubMed  CAS  Google Scholar 

  35. Kozek-Langenecker SA, Marhofer P, Krenn CG, et al. Simulation of an epidural test dose with intravenous isoproterenol in sevoflurane- and halothane-anesthetized children. Anesth Analg 1998; 87: 549–52

    PubMed  CAS  Google Scholar 

  36. Shiga M, Nishina K, Midawa K, et al. Oral clonidine premedication does not change efficacy of simulated epidural test dose in sevoflurane-anesthetized children. Anesthesiology 2000; 93: 954–8

    PubMed  CAS  Google Scholar 

  37. Freid EB, Bailey AG, Valley RD. Electrocardiographic and hemodynamic changes associated with unintentional intravascular injection of bupivacaine with epinephrine in infants. Anesthesiology 1993; 79: 394–8

    PubMed  CAS  Google Scholar 

  38. Fisher QA, Shaffner DH, Yaster M. Detection of intravascular injection of regional anaesthetics in children. Can J Anaesth 1997; 44: 592–8

    PubMed  CAS  Google Scholar 

  39. Kozek-Langenecker SA, Marhofer P, et al. Cardiovascular criteria for epidural test dosing in sevoflurane- and halothane-anesthetized children. Anesth Analg 2000; 90: 579–83

    PubMed  CAS  Google Scholar 

  40. Abajian JC, Mellish RWP, Browne AF, et al. Spinal anesthesia for surgery in the high risk infant. Anesth Analg 1984; 63: 359–62

    PubMed  CAS  Google Scholar 

  41. Harnik EV, Hoy GR, Potolicchio S, et al. Spinal anesthesia in premature infants recovering from respiratory distress syndrome. Anesthesiology 1986; 64: 95–9

    PubMed  CAS  Google Scholar 

  42. Webster AC, McKishnie JD, Kenyon CF, et al. Spinal anaesthesia for inguinal hernia repair in high-risk neonates. Can J Anaesth 1991; 38: 281–6

    PubMed  CAS  Google Scholar 

  43. Sartorelli KH, Abajian JC, Kreutz JM, et al. Improved outcome utilizing spinal anesthesia in high-risk infants. J Pediatr Surg 1992; 27: 1022–5

    PubMed  CAS  Google Scholar 

  44. Berde CB. Toxicity of local anesthetics in infants and children. J Pediatr 1993; 122 (5 Pt 2): S14–20

    PubMed  CAS  Google Scholar 

  45. Eyres RL. Local anaesthetic agents in infancy. Paediatr Anaesth 1995; 5: 213–8

    PubMed  CAS  Google Scholar 

  46. Dalens BJ, Mazoit JX. Adverse effects of regional anaesthesia in children. Drug Saf 1998; 19: 251–68

    PubMed  CAS  Google Scholar 

  47. Lloyd-Thomas AR. Modern concepts of paediatric analgesia. Pharmacol Ther 1999; 83: 1–20

    PubMed  CAS  Google Scholar 

  48. Wilder RT. Local anesthetics for the pediatric patient. Pediatr Clin North Am 2000; 47: 545–58

    PubMed  CAS  Google Scholar 

  49. Badgwell JM, Heavner JE, Kytta J. Bupivacaine toxicity in young pigs is age-dependent and is affected by volatile anesthetics. Anesthesiology 1990; 73: 297–303

    PubMed  CAS  Google Scholar 

  50. Ved SA, Pinosky M, Nicodemus H. Ventricular tachycardia and brief cardiovascular collapse in two infants after caudal anesthesia using a bupivacaine-epinephrine solution. Anesthesiology 1993; 79: 1121–3

    PubMed  CAS  Google Scholar 

  51. Fortuna A. Caudal analgesia: a simple and safe technique in paediatric surgery. Br J Anaesth 1967; 39: 165–70

    PubMed  CAS  Google Scholar 

  52. McCloskey JJ, Haun SE, Desphande JK. Bupivacaine toxicity secondary to continuous caudal epidural infusion in children. Anesth Analg 1992; 75: 287–90

    PubMed  CAS  Google Scholar 

  53. Agarwal R, Gutlove DP, Lockhart CH. Seizures occurring in pediatric patients receiving continuous infusion of bupivacaine. Anesth Analg 1992; 75: 284–6

    PubMed  CAS  Google Scholar 

  54. Larsson BA, Olsson GL, Lönnqvist PA. Plasma concentrations of bupivacaine in young infants after continuous epidural infusion. Paediatr Anaesth 1994; 4: 159–62

    Google Scholar 

  55. Peutrell JM, Hughes DG. A grand-mal convulsion in a child in association with a continuous epidural infusion of bupivacaine [letter]. Anaesthesia 1995; 50: 563–4

    PubMed  CAS  Google Scholar 

  56. Bösenberg AT. Epidural analgesia for major neonatal surgery. Paediatr Anaesth 1998; 8: 479–83

    PubMed  Google Scholar 

  57. Wood CE, Goresky GV, Klassen KA, et al. Complications of continuous epidural infusions for postoperative analgesia in children. Can J Anaesth 1994; 41: 613–20

    PubMed  CAS  Google Scholar 

  58. Maxwell LG, Martin LD, Yaster M. Bupivacaine-induced cardiac toxicity in neonates: successful treatment with intravenous phenytoin. Anesthesiology 1994; 80: 682–6

    PubMed  CAS  Google Scholar 

  59. Rothstein P, Dornbusch J, Shaywitz BA. Prolonged seizures associated with the use of viscous lidocaine. J Pediatr 1982; 101: 461–3

    PubMed  CAS  Google Scholar 

  60. Hess GP, Walson PD. Seizures secondary to oral viscous lidocaine. Ann Emerg Med 1988; 17: 725–7

    PubMed  CAS  Google Scholar 

  61. Garrettson LK, McGee EB. Rapid onset of seizures following aspiration of viscous lidocaine. Clin Toxicol 1992; 30: 413–22

    CAS  Google Scholar 

  62. Smith M, Wolfram W, Rose R. Toxicity-seizures in an infant caused by (or related to) oral viscous lidocaine use. J Emerg Med 1992; 10: 587–90

    PubMed  CAS  Google Scholar 

  63. Edgren B, Tilelli J, Gehrz R. Intravenous lidocaine overdosage in a child. J Toxicol Clin Toxicol 1986; 24: 51–8

    PubMed  CAS  Google Scholar 

  64. Daya MR, Burton BT, Shleiss MR, et al. Recurrent seizures following mucosal application of TAC. Ann Emerg Med 1988; 17: 646–8

    PubMed  CAS  Google Scholar 

  65. McGown RG. Caudal analgesia in children: five hundred cases for procedures below the diaphragm. Anaesthesia 1982; 37: 806–18

    PubMed  CAS  Google Scholar 

  66. Matsumiya N, Dohi S, Takahashi H, et al. Cardiovascular collapse in an infant after caudal anesthesia with a lidocaine-epinephrine solution. Anesth Analg 1986; 65: 1074–6

    PubMed  CAS  Google Scholar 

  67. Riquelme CM, Bell B, Edwards J, et al. The influence of age on cardiovascular toxicity of intravenous bupivacaine in young dogs. Anaesth Intensive Care 1987; 15: 436–9

    PubMed  CAS  Google Scholar 

  68. Morishima HO, Pedersen H, Finster M, et al. Toxicity of lidocaine in adult, newborn and fetal sheep. Anesthesiology 1981; 55: 57–61

    PubMed  CAS  Google Scholar 

  69. Kohane DS, Shankar WN, Shubina M, et al. Sciatic nerve blockade in infant, adolescent, and adult rats: a comparison of ropivacaine with bupivacaine. Anesthesiology 1998; 89: 1199–208

    PubMed  CAS  Google Scholar 

  70. Bourlon-Figuet S, Dubousset A-M, Benhamou D, et al. Transient neurologic symptoms after epidural analgesia in a five-year-old child. Anesth Analg 2000; 91: 856–7

    PubMed  CAS  Google Scholar 

  71. Chamboulives J. Indications, effects, and monitoring procedures. In: Dalens BJ, editor. Pediatric regional anesthesia. Boca Raton (FL): CRC Press, 1990: 153–7

    Google Scholar 

  72. Dohi S, Naito J, Takahashi T. Age-related changes in blood pressure and duration of motor block in spinal anesthesia. Anesthesiology 1979; 50: 319–23

    PubMed  CAS  Google Scholar 

  73. Murat I, Delleur MM, Esteve C, et al. Continuous extradural anaesthesia in children: clinical and haemodynamic implications. Br J Anaesth 1987; 69: 1441–50

    Google Scholar 

  74. Oberlander TF, Berde CB, Lam KH, et al. Infants tolerate spinal anesthesia with minimal overall autonomic changes: analysis of heart rate variability in former premature infants undergoing hernia repair. Anesth Analg 1995; 80: 20–7

    PubMed  CAS  Google Scholar 

  75. Tsuji MH, Horigome H, Yamashita M. Left ventricular functions are not impaired after lumbar epidural anaesthesia in young children. Paediatr Anaesth 1996; 6: 405–9

    PubMed  CAS  Google Scholar 

  76. Covino BG, Wildsmith JAW. Clinical pharmacology of local anesthetic agents. In: Cousins MJ, Bridenbaugh PO, editors. Neural blockade. 3rd ed. Philadelphia (PA): Lippincott-Raven, 1998: 97–128

    Google Scholar 

  77. Tucker GT, Mather LE. Properties, absorption, and disposition of local anesthetic agents. In: Cousins MJ, Bridenbaugh PO, editors. Neural blockade. 3rd ed. Philadelphia (PA): Lippincott-Raven, 1998: 55–95

    Google Scholar 

  78. Maccani RM, Wedel DJ, Melton A, et al. Femoral and lateral femoral cutaneous nerve block for muscle biopsies in children. Paediatr Anaesth 1995; 5: 223–7

    PubMed  CAS  Google Scholar 

  79. Tobias JD, O’Dell N. Chloroprocaine for epidural anesthesia in infants and children. J Am Assoc Nurse Anesth 1995; 63: 131–5

    CAS  Google Scholar 

  80. Henderson K, Sethna NF, Berde C. Continuous caudal anesthesia for inguinal hernia repair in former preterm infants. J Clin Anesth 1993; 5: 129–33

    PubMed  CAS  Google Scholar 

  81. Tobias JD, Lowe S, O’Dell N, et al. Continuous regional anaesthesia in infants. Can J Anaesth 1993; 40: 1065–8

    PubMed  CAS  Google Scholar 

  82. Tobias JD. Anaesthetic management of the child with myotonic dystrophy: epidural anaesthesia as an alternative to general anaesthesia. Paediatr Anaesth 1995; 5: 335–8

    PubMed  CAS  Google Scholar 

  83. Veverka TJ, Henry DN, Milroy MJ, et al. Spinal anesthesia reduces the hazard of apnea in high-risk infants. Am Surg 1991; 57: 531–5

    PubMed  CAS  Google Scholar 

  84. Rice LJ, DeMars PD, Whalen TV, et al. Duration of spinal anesthesia in infants less than one year of age. Reg Anesth 1994; 19: 325–9

    PubMed  CAS  Google Scholar 

  85. Krane EJ, Haberkern CM, Jacobson LE. Postoperative apnea, bradycardia, and oxygen desaturation in formerly premature infants: prospective comparison of spinal and general anesthesia. Anesth Analg 1995; 80: 7–13

    PubMed  CAS  Google Scholar 

  86. Williams RK, McBride WJ, Abajian JC. Combined spinal and epidural anaesthesia for major abdominal surgery in infants. Can J Anaesth 1997; 44: 511–4

    PubMed  CAS  Google Scholar 

  87. Tobias JD. Spinal anaesthesia in infants and children. Paediatr Anaesth 2000; 10: 5–16

    PubMed  CAS  Google Scholar 

  88. Lawson RA, Smart NG, Gudgeon AC, et al. Evaluation of an amethocaine gel preparation for percutaneous analgesia before venous cannulation in children. Br J Anaesth 1995; 75: 282–5

    PubMed  CAS  Google Scholar 

  89. Jain A, Rutter N. Local anaesthetic effect of topical amethocaine gel in neonates: randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 2000; 82: F42–5

    PubMed  CAS  Google Scholar 

  90. Wright TE, Orr RJ, Haberkern CM, et al. Complications during spinal anesthesia in infants: high spinal blockade. Anesthesiology 1990; 73: 1290–2

    PubMed  CAS  Google Scholar 

  91. Yaster M, Tobin JR, Fisher QA, et al. Local anesthetics in the management of acute pain in children. J Pediatr 1994; 124: 165–76

    PubMed  CAS  Google Scholar 

  92. Miyabe M, Kakiuchi Y, Kihara S, et al. The plasma concentration of lidocaine’s principal metabolite increases during continuous epidural anesthesia in infants and children. Anesth Analg 1998; 87: 1056–7

    PubMed  CAS  Google Scholar 

  93. Takasaki M. Blood concentrations of lidocaine, mepivacaine and bupivacaine during caudal analgesia in children. Acta Anaesthesiol Scand 1984; 28: 211–4

    PubMed  CAS  Google Scholar 

  94. Ecoffey C, Desparmet J, Maury M, et al. Pharmacokinetics of lignocaine in children following caudal anesthesia. Br J Anaesth 1984; 56: 1399–402

    PubMed  CAS  Google Scholar 

  95. Finholt DA, Stirt JA, DiFazio CA, et al. Lidocaine pharmacokinetics in children during general anesthesia. Anesth Analg 1986; 65: 279–82

    PubMed  CAS  Google Scholar 

  96. Giaufré E, Bruguerolle B, Morrison-Lacombe G, et al. The influence of midazolam on the plasma concentrations of bupivacaine and lidocaine after caudal injection of a mixture of the local anesthetics in children. Acta Anaesthesiol Scand 1990; 34: 44–6

    PubMed  Google Scholar 

  97. Sfez M, Mapihan YL, Mazoit X, et al. Local anesthetic serum concentrations after penile nerve block in children. Anesth Analg 1990; 70: 423–6

    Google Scholar 

  98. Sitbon P, Laffon M, Lesage V, et al. Lidocaine plasma concentrations in pediatric patients after providing airway topical anesthesia from a calibrated device. Anesth Analg 1996; 82: 1003–6

    PubMed  CAS  Google Scholar 

  99. Schneider M, Ettlin T, Kaufmann M, et al. Transient neurologic toxicity after hyperbaric subarachnoid anesthesia with 5% lidocaine. Anesth Analg 1993; 76: 1154–7

    PubMed  CAS  Google Scholar 

  100. Horlocker TT, Wedel D. Neurologic complications of spinal and epidural anesthesia. Reg Anesth Pain Med 2000; 25: 83–98

    PubMed  CAS  Google Scholar 

  101. Freedman JM, Li DK, Drasner K, et al. Transient neurologic symptoms after spinal anesthesia: an epidemiologic study of 1863 patients. Anesthesiology 1998; 89: 633–41

    PubMed  CAS  Google Scholar 

  102. Hampl KF, Schneider MC, Pargger H, et al. A similar incidence of transient neurologic symptoms after spinal anesthesia with 2% and 5% lidocaine. Anesth Analg 1996; 83: 1051–4

    PubMed  CAS  Google Scholar 

  103. Pollock JE, Liu SS, Neal JM, et al. Dilution of spinal lidocaine does not alter the incidence of transient neurologic symptoms. Anesthesiology 1999; 90: 445–50

    PubMed  CAS  Google Scholar 

  104. Hodgson PS, Neal JM, Pollock JE, et al. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg 1999; 88: 797–809

    PubMed  CAS  Google Scholar 

  105. Schulte-Steinberg O, Rahlfs VW. Caudal anaesthesia in children and spread of 1 per cent lignocaine: a statistical study. Br J Anaesth 1970; 42: 1093–9

    PubMed  CAS  Google Scholar 

  106. Touloukian RJ, Wugmeister M, Pickett LK, et al. Caudal anesthesia for neonatal anoperineal and rectal operations. Anesth Analg 1971; 50: 565–8

    PubMed  CAS  Google Scholar 

  107. Takasaki M, Dohi S, Kawabata Y, et al. Dosage of lidocaine for caudal anesthesia in infants and children. Anesthesiology 1977; 47: 527–9

    PubMed  CAS  Google Scholar 

  108. Dalens B, Tanguy A, Haberer JP. Lumbar epidural anesthesia for operative and postoperative pain relief in infants and young children. Anesth Analg 1986; 65: 1069–73

    PubMed  CAS  Google Scholar 

  109. Dalens B, Vanneuville G, Tanguy A. Comparison of the fascia iliaca compartment block with the 3-in-1 block in children. Anesth Analg 1989; 69: 705–13

    PubMed  CAS  Google Scholar 

  110. Dalens B, Tanguy A, Vanneuville G. Sciatic nerve blocks in children: comparison of the posterior, anterior, and lateral approaches in 180 pediatric patients. Anesth Analg 1990; 70: 131–7

    PubMed  CAS  Google Scholar 

  111. Barnes CI, Blasier RD, Dodge BM. Intravenous regional anesthesia: a safe and cost-effective outpatient anesthetic for upper extremity fracture treatment in children. J Pediatr Orthop 1991; 11: 717–20

    PubMed  CAS  Google Scholar 

  112. Juliano PJ, Mazur JM, Cummings RJ, et al. Low-dose lidocaine intravenous regional anesthesia for forearm fractures in children. J Pediatr Orthop 1992; 12: 633–5

    PubMed  CAS  Google Scholar 

  113. Colizza WQ, Said E. Intravenous regional anesthesia in the treatment of forearm and wrist fractures and dislocations in children. Can J Surg 1993; 36: 225–8

    PubMed  CAS  Google Scholar 

  114. Bolte RG, Stevens PM, Scott SM, et al. Mini-dose Bier block intravenous regional anesthesia in the emergency department treatment of pediatric upper-extremity injuries. J Pediatr Orthop 1994; 14: 534–7

    PubMed  CAS  Google Scholar 

  115. Olney BW, Lugg PC, Turner PL, et al. Outpatient treatment of upper extremity injuries in childhood using intravenous regional anaesthesia. J Pediatr Orthop 1988; 8: 576–9

    PubMed  CAS  Google Scholar 

  116. Duncan PG, Kobrinsky N. Prilocaine-induced methemoglobinemia in a newborn infant. Anesthesiology 1983; 59: 75–6

    PubMed  CAS  Google Scholar 

  117. Serlo W, Haapanemi L. Regional anaesthesia in paediatric surgery. Acta Anaesthesiol Scand 1985; 29: 283–6

    PubMed  CAS  Google Scholar 

  118. Steward DJ. Eutectic mixture of local anesthetics (EMLA): what is it, what does it do. J Pediatr 1993; 122: S21–3

    PubMed  CAS  Google Scholar 

  119. Russell SCS, Doyle E. A risk-benefit assessment of topical percutaneous local anaesthetics in children. Drug Saf 1997; 16: 279–87

    PubMed  CAS  Google Scholar 

  120. Engberg G, Danielson K, Henneberg S, et al. Plasma concentrations of prilocaine and lidocaine and methaemoglobin formation in infants after epicutaneous application of a 5% lidocaine-prilocaine (EMLA). Acta Anaesthesiol Scand 1987; 31: 624–8

    PubMed  CAS  Google Scholar 

  121. Nilsson A, Engberg G, Henneberg S, et al. Inverse relationship between age-dependent erythrocyte activity of methaemoglobin reductase and prilocaine-induced methaemoglobinaemia during infancy. Br J Anaesth 1990; 64: 72–6

    PubMed  CAS  Google Scholar 

  122. Taddio A, Shennan AT, Stevens B, et al. Safety of lidocaine-prilocaine cream in the treatment of preterm neonates. J Pediatr 1995; 127: 1002–5

    PubMed  CAS  Google Scholar 

  123. Gourrier E, Karoubi P, El Hanache A, et al. Utilisation de la crème EMLA chez le nouveau-né à terme et premature. Étude d’efficacité et de tolerance. Arch Pediatr 1995; 2: 1041–6

    PubMed  CAS  Google Scholar 

  124. Lander J, Brady-Fryer B, Metcalfe JB, et al. Comparison of ring block, dorsal penile nerve block, and topical anesthesia for neonatal circumcision: a randomized controlled trial. JAMA 1997; 278: 2157–62

    PubMed  CAS  Google Scholar 

  125. Brisman M, Ljung BML, Otterbom I, et al. Methaemoglobin formation after the use of EMLA in term neonates. Acta Paediatr Scand 1998; 87: 1191–4

    CAS  Google Scholar 

  126. Kumar AR, Dunn N, Mubariz N. Methemoglobinemia associated with a prilocainelidocaine cream. Clin Pediatr 1997; 36: 239–40

    CAS  Google Scholar 

  127. Frayling IM, Addison GM, Chattergee K, et al. Methaemoglobinaemia in children treated with prilocaine-lignocaine cream. BMJ 1990; 301: 153–4

    PubMed  CAS  Google Scholar 

  128. Bazin JE, Dalens B, Joyon D, et al. Anesthésie péridurale continue chez l’enfant de moins de un an. Agressologie 1990; 31: 37–8

    PubMed  CAS  Google Scholar 

  129. Dalens B, Tanguy A, Vanneuville G. Lumbar plexus block in children: a comparison of two procedures in 50 patients. Anesth Analg 1988; 67: 750–8

    PubMed  CAS  Google Scholar 

  130. Morgan D, McQuillan D, Thomas J. Pharmacokinetics and metabolism of the anilide local anaesthetics in neonates: 11 etidocaine. Eur J Clin Pharmacol 1978; 13: 365–71

    PubMed  CAS  Google Scholar 

  131. Giaufré E, Bruguerolle B, Morisson-Lacombe G, et al. Influence of midazolam on the plasma concentrations of mepivacaine after lumbar epidural injection in children. Eur J Clin Pharmacol 1990; 38: 91–2

    PubMed  Google Scholar 

  132. Meffin P, Long GJ, Thomas J. Clearance and metabolism of mepivacaine in the human neonate. Clin Pharmacol Ther 1973; 14: 218–25

    PubMed  CAS  Google Scholar 

  133. Takasaki M, Kosaka Y. Effects of caudal block with mepivacaine on resting ventilation and ventilatory response to carbon dioxide in sedated children. Can J Anaesth 1988; 35: 354–8

    PubMed  CAS  Google Scholar 

  134. Busoni P, Messeri A, Sarti A. The lumbosacral epidural block: a modified Taylor approach for abdominal urologic surgery in children. Anaesth Intens Care 1991; 19: 325–8

    CAS  Google Scholar 

  135. Busoni P. Trans-sacral extradural anesthesia in pediatrics [in French]. Cah Anesthesiol 1992; 40: 484–6

    PubMed  CAS  Google Scholar 

  136. Ivani G, Mattioli G, Rega M, et al. Clonidine-mepivacaine mixture vs plain mepivacaine in paediatric surgery. Paediatr Anaesth 1996; 6: 111–4

    PubMed  CAS  Google Scholar 

  137. Ivani G, Conio A, Papurel G, et al. 1000 consecutive blocks in a children’s hospital: how to manage them safely [letter]. Reg Anesth Pain Med 2001; 26: 93–4

    PubMed  CAS  Google Scholar 

  138. Wedel DJ, Krohn JS, Hall JA. Brachial plexus anesthesia in pediatric patients. Mayo Clin Proc 1991; 66: 583–8

    PubMed  CAS  Google Scholar 

  139. Moore DC, Mather LE, Bridenbaugh LD. Arterial and venous plasma levels of bupivacaine following peripheral nerve blocks. Anesth Analg 1976; 53: 763–8

    Google Scholar 

  140. Davis NL, deJong RH. Successful resuscitation following massive bupivacaine overdose. Anesth Analg 1982; 61: 62–4

    PubMed  CAS  Google Scholar 

  141. Ecoffey C, Dubouset AM, Samii K. Lumbar and thoracic epidural anesthesia for urologic and upper abdominal surgery in infants and children. Anesthesiology 1986; 65: 87–90

    PubMed  CAS  Google Scholar 

  142. Spear RM. Dose-response in infants receiving caudal anaesthesia with bupivacaine. Paediatr Anaesth 1991; 1: 47–52

    Google Scholar 

  143. Gunter JB, Watcha MF, Forestner JE, et al. Caudal epidural anesthesia in conscious premature and high-risk infants. J Pediatr Surg 1991; 26: 9–14

    PubMed  CAS  Google Scholar 

  144. Peutrell JM, Hughes DG. Epidural anaesthesia through caudal catheters for inguinal herniotomies in awake ex-premature babies. Anaesthesia 1993; 47: 128–31

    Google Scholar 

  145. McIlvaine W, Chang JHT, Jones M. The effective use of intrapleural bupivacaine for analgesia after thoracic and subcostal incisions in children. J Pediatr Surg 1988; 23: 1184–7

    PubMed  CAS  Google Scholar 

  146. McIlvaine WB, Knox RF, Fennessey PV, et al. Continuous infusion of bupivacaine via intrapleural catheter for analgesia after thoracotomy in children. Anesthesiology 1988; 69: 261–4

    PubMed  CAS  Google Scholar 

  147. Eng J, Sabanathan S. Continuous paravertebral block for postthoracotomy analgesia in children. J Pediatr Surg 1992; 27: 556–7

    PubMed  CAS  Google Scholar 

  148. Lönnqvist PA. Continuous paravertebral block in children: initial experience. Anaesthesia 1992; 47: 607–9

    PubMed  Google Scholar 

  149. Semsroth M, Plattner O, Horcher E. Effective pain relief with continuous intrapleural bupivacaine after thoracotomy in infants and children. Paediatr Anaesth 1996; 6: 303–10

    PubMed  CAS  Google Scholar 

  150. Moyao-García D, Garza-Leyva M, Velázquez-Armenta EY, et al. Caudal block with 4 mg•kg-1 (1.6 ml•kg-1) of bupivacaine 0.25% in children undergoing surgical correction of congenital pyloric stenosis. Paediatr Anaesth 2002; 12: 404–10

    PubMed  Google Scholar 

  151. Eyres RL, Bishop W, Oppenheim RC, et al. Plasma bupivacaine concentrations in children during caudal epidural analgesia. Anaesth Intens Care 1983; 11: 20–2

    CAS  Google Scholar 

  152. Ecoffey C, Desparmet J, Maury M, et al. Bupivacaine in children: pharmacokinetics following caudal anesthesia. Anesthesiology 1985; 63: 447–8

    PubMed  CAS  Google Scholar 

  153. Desparmet J, Meistelman C, Barre J, et al. Continuous epidural infusion of bupivacaine for postoperative pain relief in children. Anesthesiology 1987; 67: 108–10

    PubMed  CAS  Google Scholar 

  154. Murat I, Esteve C, Montay G, et al. Pharmacokinetics and cardiovascular effects of bupivacaine during epidural anesthesia in children with Duchenne muscular dystrophy. Anesthesiology 1987; 67: 249–52

    PubMed  CAS  Google Scholar 

  155. Stow PJ, Scott A, Phillips A, et al. Plasma bupivacaine concentrations during caudal analgesia and ilioinguinal-iliohypogastric nerve block in children. Anaesthesia 1988; 43: 650–3

    PubMed  CAS  Google Scholar 

  156. Peutrell JM, Holder K, Gregory M. Plasma bupivacaine concentrations associated with continuous extradural infusions in babies. Br J Anaesth 1997; 78: 160–2

    PubMed  CAS  Google Scholar 

  157. Larsson BA, Lönnqvist PA, Olsson GL. Plasma concentrations of bupivacaine in neonates after continuous epidural infusion. Anesth Analg 1997; 84: 501–5

    PubMed  CAS  Google Scholar 

  158. Frawley G, Ragg P, Hack H. Plasma concentrations of bupivacaine after combined spinal epidural anaesthesia in infants and neonates. Paediatr Anaesth 2000; 10: 619–25

    PubMed  CAS  Google Scholar 

  159. Epstein RH, Larijani GE, Wolfson PJH, et al. Plasma bupivacaine concentrations following ilioinguinal-iliohypogastric nerve blockade in children. Anesthesiology 1988; 69: 773–6

    PubMed  CAS  Google Scholar 

  160. Smith T, Moratin P, Wulf H. Smaller children have greater bupivacaine plasma concentrations after ilioinguinal block. Br J Anaesth 1996; 76: 452–5

    PubMed  CAS  Google Scholar 

  161. Ronchi L, Rosenbaum D, Athouel A, et al. Femoral nerve blockade in children using bupivacaine. Anesthesiology 1989; 70: 622–4

    PubMed  CAS  Google Scholar 

  162. Rothstein P, Arthur GR, Feldman HS, et al. Bupivacaine for intercostal nerve blocks in children: blood concentrations and pharmacokinetics. Anesth Analg 1986; 65: 625–32

    PubMed  CAS  Google Scholar 

  163. Bricker SRW, Telford RJ, Booker PD. Pharmacokinetics of bupivacaine following intraoperative intercostal nerve block in neonates and in infants aged less than 6 months. Anesthesiology 1989; 70: 942–7

    PubMed  CAS  Google Scholar 

  164. Weston PJ, Bourchier D. The pharmacokinetics of bupivacaine following interpleural nerve block in infants of very low birthweight. Paediatr Anaesth 1995; 5: 219–22

    PubMed  CAS  Google Scholar 

  165. Karmarkar MK, Booker PD, Franks R, et al. Continuous extrapleural paravertebral infusion of bupivacaine for post-thoracotomy analgesia in young infants. Br J Anaesth 1996; 76: 811–5

    Google Scholar 

  166. Cheung SLW, Booker PD, Franks R, et al. Serum concentrations of bupivacaine during prolonged continuous paravertebral infusion in young infants. Br J Anaesth 1997; 79: 9–13

    PubMed  CAS  Google Scholar 

  167. Campbell RJ, Ilett KF, Dusci L. Plasma bupivacaine concentrations after axillary block in children. Anaesth Intens Care 1986; 14: 343–6

    CAS  Google Scholar 

  168. Wong AK, Braude BM, Macdonald RM, et al. Post-tonsillectomy infiltration with bupivacaine reduces immediate postoperative pain in children. Can J Anaesth 1995; 42: 770–4

    PubMed  CAS  Google Scholar 

  169. Wolf AR, Valley RD, Fear DW, et al. Bupivacaine for caudal analgesia in infants and children: the optimal effective concentration. Anesthesiology 1988; 69: 102–6

    PubMed  CAS  Google Scholar 

  170. Gunter JB, Dunn CM, Bennie JB, et al. Optimum concentration of bupivacaine for combined caudal-general anesthesia in children. Anesthesiology 1991; 75: 57–61

    PubMed  CAS  Google Scholar 

  171. Malviya S, Fear DW, Roy WL, et al. Adequacy of caudal analgesia in children after penoscrotal and inguinal surgery using 0.5 or 1.0 ml/kg bupivacaine 0.125%. Can J Anaesth 1992; 39: 449–53

    PubMed  CAS  Google Scholar 

  172. Spear RM, Deshpande JK, Maxwell LG. Caudal anesthesia in the awake, high-risk infant. Anesthesiology 1988; 69: 407–9

    PubMed  CAS  Google Scholar 

  173. Cucchiaro G, De Lagausie P, El-Ghonemi A, et al. Single-dose caudal anesthesia for major intraabdominal operations in high-risk infants. Anesth Analg 2001; 92: 1439–4

    PubMed  CAS  Google Scholar 

  174. Bouchut JC, Dubois R, Foussat C, et al. Evaluation of caudal anaesthesia performed in conscious ex-premature infants for inguinal herniotomies. Paediatr Anaesth 2001; 11: 55–8

    PubMed  CAS  Google Scholar 

  175. Webster AC, McKishnie JD, Watson JT, et al. Lumbar epidural anaesthesia for inguinal hernia repair in low birth weight infants. Can J Anaesth 1993; 40: 670–5

    PubMed  CAS  Google Scholar 

  176. Shenkman Z, Sheffer O, Erez I, et al. Spinal anesthesia for gastrostomy in an infant with nemaline myopathy. Anesth Analg 2000; 91: 858–9

    PubMed  CAS  Google Scholar 

  177. Kokki H, Tuivinen K, Hendolin H. Spinal anaesthesia for paediatric day-case surgery: a double-blind, randomized, parallel group, prospective comparison of isobaric and hyperbaric bupivacaine. Br J Anaesth 1998; 81: 502–6

    PubMed  CAS  Google Scholar 

  178. Kokki H, Heikkinen M, Ahonen R. Recovery after paediatric daycase herniotomy performed under spinal anaesthesia. Paediatr Anaesth 2000; 10: 413–7

    PubMed  CAS  Google Scholar 

  179. Carr AS, Fear DW, Sikich N, et al. Bupivacaine 0.125% produces motor block and weakness with fentanyl epidural analgesia in children. Can J Anaesth 1998; 45: 1054–60

    PubMed  CAS  Google Scholar 

  180. Gunter JB, McAuliffe J, Gregg T, et al. Continuous epidural butorphanol relieves pruritus associated with epidural morphine infusions in children. Paediatr Anaesth 2000; 10: 167–72

    PubMed  CAS  Google Scholar 

  181. Gibson MP, Vetter T, Crow JP. Use of continuous retropleural bupivacaine in postoperative pain management for pediatric thoracotomy. J Pediatr Surg 1999; 34: 199–201

    PubMed  CAS  Google Scholar 

  182. Hinkle AJ. Percutaneous inguinal block for the outpatient management of postherniorrhaphy pain in children. Anesthesiology 1987; 67: 411–3

    PubMed  CAS  Google Scholar 

  183. Ross AK, Eck JB, Tobias JD. Pediatric regional anesthesia: beyond the caudal. Anesth Analg 2000; 91: 16–26

    PubMed  CAS  Google Scholar 

  184. Konrad C, Jöhr M. Blockade of the sciatic nerve in the popliteal fossa: a system for standardization in children. Anesth Analg 1998; 87: 1256–8

    PubMed  CAS  Google Scholar 

  185. de Jong RH. Ropivacaine: white knight or dark horse. Reg Anesth 1995; 20: 474–81

    PubMed  Google Scholar 

  186. McClure JH. Ropivacaine. Br J Anaesth 1996; 76: 300–7

    PubMed  CAS  Google Scholar 

  187. Nancarrow C, Rutten AJ, Runciman WB, et al. Myocardial and cerebral drug concentrations and the mechanisms of death after fatal intravenous doses of lidocaine, bupivacaine, and ropivacaine in the sheep. Anesth Analg 1989; 69: 276–83

    PubMed  CAS  Google Scholar 

  188. Danielsson BRG, Danielson MK, Böö IL, et al. Toxicity of bupivacaine and ropivacaine in relation to free plasma concentrations in pregnant rats: a comparative study. Pharmacol Toxicol 1997; 81: 90–6

    PubMed  CAS  Google Scholar 

  189. Morrison SG, Dominguez JJ, Frascarolo P, et al. A comparison of the electrocardiographic cardiotoxic effects of racemic bupivacaine, levobupivacaine, and ropivacaine in anesthetized swine. Anesth Analg 2000; 90: 1308–14

    PubMed  CAS  Google Scholar 

  190. Dony P, Dewinde V, Vanderick B, et al. The comparative toxicity of ropivacaine and bupivacaine at equipotent doses in rats. Anesth Analg 2000; 91: 1489–92

    PubMed  CAS  Google Scholar 

  191. Ohmura S, Kawada M, Ohta T, et al. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats. Anesth Analg 2001; 93: 743–8

    PubMed  CAS  Google Scholar 

  192. Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69: 563–9

    PubMed  CAS  Google Scholar 

  193. Knudsen K, Beckman Suurküla M, Blomberg S, et al. Central nervous and cardiovascular effects of iv infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78: 507–14

    PubMed  CAS  Google Scholar 

  194. Hansen TG, Ilett KF, Lim SI, et al. Pharmacokinetics and clinical efficacy of longterm epidural ropivacaine infusion in children. Br J Anaesth 2000; 85: 347–53

    PubMed  CAS  Google Scholar 

  195. Lönnqvist PA, Westrin P, Larsson BA, et al. Ropivacaine pharmacokinetics after caudal block in 1–8 year old children. Br J Anaesth 2000; 85: 506–11

    PubMed  Google Scholar 

  196. Dalens B, Ecoffey C, Joly A, et al. Pharmacokinetics and analgesic effect of ropivacaine following ilioinguinal/iliohypogastric nerve block in children. Paediatr Anaesth 2001; 11: 415–20

    PubMed  CAS  Google Scholar 

  197. Hansen TG, Ilett KF, Reid C, et al. Caudal ropivacaine in infants: population pharmacokinetics and plasma concentrations. Anesthesiology 2001; 94: 579–84

    PubMed  CAS  Google Scholar 

  198. Koinig H, Krenn CG, Glaser C, et al. The dose-response of caudal ropivacaine in children. Anesthesiology 1999; 90: 1339–44

    PubMed  CAS  Google Scholar 

  199. Habre W, Bergesio R, Johnson C, et al. Pharmacokinetics of ropivacaine following caudal analgesia in children. Paediatr Anaesth 2000; 10: 143–7

    PubMed  CAS  Google Scholar 

  200. Wulf H, Peters C, Behnke H. The pharmacokinetics of caudal ropivacaine 0.2% in children. Anaesthesia 2000; 55: 757–60

    PubMed  CAS  Google Scholar 

  201. Ala-Kokko TI, Partanen A, Karinen J, et al. Pharmacokinetics of 0.2% ropivacaine and 0.2% bupivacaine following caudal blocks in children. Acta Anaesthesiol Scand 2000; 44: 1099–102

    PubMed  CAS  Google Scholar 

  202. McCann ME, Sethna NF, Maziot JX, et al. The pharmacokinetics of epidural ropivacaine in infants and young children. Anesth Analg 2001; 93: 893–7

    PubMed  CAS  Google Scholar 

  203. Morton NS. Ropivacaine in children [editorial]. Br J Anaesth 2000; 85: 344–6

    PubMed  CAS  Google Scholar 

  204. Van Obbergh LJ, Veyckemans F. Caudal and epidural anaesthesia with ropivacaine in children. Acta Anaesthesiol Belg 2000; 51: 123–6

    PubMed  Google Scholar 

  205. Ivani G. Ropivacaine: is it time for children [editorial]. Paediatr Anaesth 2002; 12: 383–7

    PubMed  CAS  Google Scholar 

  206. Ivani G, Mereto N, Lampugnani E, et al. Ropivacaine in paediatric surgery: preliminary results. Paediatr Anaesth 1998; 8: 127–9

    PubMed  CAS  Google Scholar 

  207. Ivani G, Lampugnani E, Torre M, et al. Comparison of ropivacaine with bupivacaine for paediatric caudal block. Br J Anaesth 1998; 81: 247–8

    PubMed  CAS  Google Scholar 

  208. Khalil S, Campos C, Farag AM, et al. Caudal block in children: ropivacaine compared with bupivacaine. Anesthesiology 1999; 91: 1279–84

    PubMed  CAS  Google Scholar 

  209. Da Conceicao MJ, Coelho L, Khalil M. Ropivacaine 0.25% compared with bupivacaine 0.25% by the caudal route. Paediatr Anaesth 1999; 9: 229–33

    PubMed  Google Scholar 

  210. Luz G, Innerhofer P, Häussler B, et al. Comparison of ropivacaine 0.1% and 0.2% for single-shot caudal anaesthesia in children. Paediatr Anaesth 2000; 10: 499–504

    PubMed  CAS  Google Scholar 

  211. Ivani G, Lampugnani E, De Negri P, et al. Ropivacaine vs bupivacaine in major surgery in infants. Can J Anaesth 1999; 46: 467–9

    PubMed  CAS  Google Scholar 

  212. Deng X-M, Xiao W-J, Tang G-Z, et al. The minimum local anesthetic concentration of ropivacaine for caudal analgesia in children. Anesth Analg 2002; 94: 1465–8

    PubMed  CAS  Google Scholar 

  213. De Conceicao MJ, Coelho L. Caudal anaesthesia with 0.375% ropivacaine or 0.375% bupivacaine in paediatric patients. Br J Anaesth 1998; 80: 507–8

    PubMed  Google Scholar 

  214. Thong WY, Pajel V, Khalil SN. Inadvertent administration of intravenous ropivacaine in a child. Paediatr Anaesth 2000; 10: 563–4

    PubMed  CAS  Google Scholar 

  215. Burke D, Joypaul V, Thomson MF. Circumcision supplemented by dorsal penile nerve block with 0.75% ropivacaine: a complication. Reg Anesth Pain Med 2000; 25: 424–7

    PubMed  CAS  Google Scholar 

  216. Ganapathy S, Sandhu HB, Stockall CA, et al. Transient neurologic symptoms (TNS) following intrathecal ropivacaine. Anesthesiology 2000; 93: 1537–9

    PubMed  CAS  Google Scholar 

  217. Åberg G. Toxicological and local anaesthetic effects of optically active isomers of two local anaesthetic compounds. Acta Pharmacol Toxicol (Copenh) 1972; 31: 273–86

    Google Scholar 

  218. Graf BM, Martin E, Bosnjak ZJ, et al. Stereospecific effect of bupivacaine isomers on atrioventricular conduction in the isolated perfused guinea pig heart. Anesthesiology 1997; 86: 410–9

    PubMed  CAS  Google Scholar 

  219. Huang YF, Pryor ME, Mather LE, et al. Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg 1998; 86: 797–804

    PubMed  CAS  Google Scholar 

  220. Bardsley H, Gristwood R, Baker H, et al. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 1998; 46: 245–9

    PubMed  CAS  Google Scholar 

  221. Kopacz DJ, Allen HW. Accidental intravenous levobupivacaine. Anesth Analg 1999; 89: 1027–9

    PubMed  CAS  Google Scholar 

  222. Bolton CM, Nolan J, Schily M, et al. Pharmacokinetic profile of levobupivacaine and fentanyl after 24 hour infusions in healthy infants and children [abstract]. Anesthesiology 2001; 95: A1291

    Google Scholar 

  223. Kopacz DJ, Allen H, Thompson GE. A comparison of epidural levobupivacaine 0.75% with racemic bupivacaine for lower abdominal surgery. Anesth Analg 2000; 90: 642–8

    PubMed  CAS  Google Scholar 

  224. Groen K, Mantel M, Zeijlmans PW, et al. Pharmacokinetics of the enantiomers of bupivacaine and mepivacaine after epidural administration of the racemates. Anesth Analg 1998; 86: 361–6

    PubMed  CAS  Google Scholar 

  225. Burm A, van der Meer A, van Kleef J, et al. Pharmacokinetics of the enantiomers of bupivacaine following intravenous administration of the racemate. Br J Clin Pharmacol 1994; 38: 125–9

    PubMed  CAS  Google Scholar 

  226. Veering BT, Burm AGL, Feyen H-M, et al. Pharmacokinetics of bupivacaine during postoperative epidural infusion: enantioselectivity and role of protein binding. Anesthesiology 2002; 96: 1062–9

    PubMed  CAS  Google Scholar 

  227. Gunter JB, Gregg T, Varughese AM, et al. Levobupivacaine for ilioinguinal/iliohypogastric nerve block in children. Anesth Analg 1999; 89: 647–9

    PubMed  CAS  Google Scholar 

  228. Ivani G, De Negri P, Grossetti R, et al. Levobupivacaine vs ropivacaine vs bupvacaine in pediatric caudal anesthesia [abstract]. Anesthesiology 2001; 95: A1238

    Google Scholar 

  229. Stoddart PA, Bolton C, Schily M, et al. Effectiveness of levobupivacaine with and without fentanyl for postoperative analgesia in infants and children [abstract]. Anesthesiology 2001; 95: A1242

    Google Scholar 

  230. Cox CR, Checketts MR, Mackenzie N, et al. Comparison of S(-)-bupivacaine with racemic (RS)-bupivacaine in supraclavicular brachial plexus block. Br J Anaesth 1998; 80: 594–8

    PubMed  CAS  Google Scholar 

  231. Cox CR, Faccenda KA, Gilhooly C, et al. Extradural S(-)-bupivacaine: comparison with racemic RS-bupivacaine. Br J Anaesth 1998; 80: 289–93

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of the Department of Anesthesia at the Children’s Hospital Medical Center in granting the time to prepare this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel B. Gunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunter, J.B. Benefit and Risks of Local Anesthetics in Infants and Children. Pediatr-Drugs 4, 649–672 (2002). https://doi.org/10.2165/00128072-200204100-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200204100-00003

Keywords

Navigation